
Red Hat Enterprise Linux 8

Using SELinux

Basic and advanced configuration of Security-Enhanced Linux (SELinux)

Last Updated: 2020-10-05

Red Hat Enterprise Linux 8 Using SELinux

Basic and advanced configuration of Security-Enhanced Linux (SELinux)

Legal Notice

Copyright © 2020 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This title assists users and administrators in learning the basics and principles upon which SELinux
functions and describes practical tasks to set up and configure various services.

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

CHAPTER 1. GETTING STARTED WITH SELINUX
1.1. INTRODUCTION TO SELINUX
1.2. BENEFITS OF RUNNING SELINUX
1.3. SELINUX EXAMPLES
1.4. SELINUX ARCHITECTURE AND PACKAGES
1.5. SELINUX STATES AND MODES

CHAPTER 2. CHANGING SELINUX STATES AND MODES
2.1. PERMANENT CHANGES IN SELINUX STATES AND MODES
2.2. CHANGING TO PERMISSIVE MODE
2.3. CHANGING TO ENFORCING MODE
2.4. ENABLING SELINUX ON SYSTEMS THAT PREVIOUSLY HAD IT DISABLED
2.5. DISABLING SELINUX
2.6. CHANGING SELINUX MODES AT BOOT TIME

CHAPTER 3. MANAGING CONFINED AND UNCONFINED USERS
3.1. CONFINED AND UNCONFINED USERS
3.2. SELINUX USER CAPABILITIES
3.3. ADDING A NEW USER AUTOMATICALLY MAPPED TO THE SELINUX UNCONFINED_U USER
3.4. ADDING A NEW USER AS AN SELINUX-CONFINED USER
3.5. CONFIGURING THE SYSTEM TO CONFINE SELINUX USERS

3.5.1. Confining regular users
3.5.2. Confining administrator users

3.5.2.1. Confining an administrator by mapping to sysadm_u
3.5.2.2. Confining an administrator using sudo and the sysadm_r role

3.5.3. Additional resources
3.6. ADDITIONAL RESOURCES

CHAPTER 4. CONFIGURING SELINUX FOR APPLICATIONS AND SERVICES WITH NON-STANDARD
CONFIGURATIONS

4.1. CUSTOMIZING THE SELINUX POLICY FOR THE APACHE HTTP SERVER IN A NON-STANDARD
CONFIGURATION
4.2. ADJUSTING THE POLICY FOR SHARING NFS AND CIFS VOLUMES USING SELINUX BOOLEANS
4.3. ADDITIONAL RESOURCES

CHAPTER 5. TROUBLESHOOTING PROBLEMS RELATED TO SELINUX
5.1. IDENTIFYING SELINUX DENIALS
5.2. ANALYZING SELINUX DENIAL MESSAGES
5.3. FIXING ANALYZED SELINUX DENIALS
5.4. SELINUX DENIALS IN THE AUDIT LOG
5.5. RELATED INFORMATION

CHAPTER 6. USING MULTI-LEVEL SECURITY (MLS)
6.1. MULTI-LEVEL SECURITY (MLS)
6.2. SWITCHING THE SELINUX POLICY TO MLS

CHAPTER 7. WRITING A CUSTOM SELINUX POLICY
7.1. CUSTOM SELINUX POLICIES AND RELATED TOOLS
7.2. CREATING AND ENFORCING AN SELINUX POLICY FOR A CUSTOM APPLICATION
7.3. ADDITIONAL RESOURCES

CHAPTER 8. CREATING SELINUX POLICIES FOR CONTAINERS

4

5
5
6
7
7
8

10
10
10
11

12
13
14

16
16
17
18
19

20
20
21
21
22
23
24

25

25
27
28

29
29
30
31

34
35

36
36
36

39
39
39
43

44

Table of Contents

1

. .

8.1. INTRODUCTION TO THE UDICA SELINUX POLICY GENERATOR
8.2. CREATING AND USING AN SELINUX POLICY FOR A CUSTOM CONTAINER
8.3. ADDITIONAL RESOURCES

CHAPTER 9. DEPLOYING THE SAME SELINUX CONFIGURATION ON MULTIPLE SYSTEMS
9.1. INTRODUCTION TO THE SELINUX SYSTEM ROLE
9.2. USING THE SELINUX SYSTEM ROLE TO APPLY SELINUX SETTINGS ON MULTIPLE SYSTEMS
9.3. TRANSFERRING SELINUX SETTINGS TO ANOTHER SYSTEM WITH SEMANAGE

44
44
47

48
48
49
50

Red Hat Enterprise Linux 8 Using SELinux

2

Table of Contents

3

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
We appreciate your input on our documentation. Please let us know how we could make it better. To do
so:

For simple comments on specific passages:

1. Make sure you are viewing the documentation in the Multi-page HTML format. In addition,
ensure you see the Feedback button in the upper right corner of the document.

2. Use your mouse cursor to highlight the part of text that you want to comment on.

3. Click the Add Feedback pop-up that appears below the highlighted text.

4. Follow the displayed instructions.

For submitting more complex feedback, create a Bugzilla ticket:

1. Go to the Bugzilla website.

2. As the Component, use Documentation.

3. Fill in the Description field with your suggestion for improvement. Include a link to the
relevant part(s) of documentation.

4. Click Submit Bug.

Red Hat Enterprise Linux 8 Using SELinux

4

https://bugzilla.redhat.com/enter_bug.cgi?product=Red Hat Enterprise Linux 8

CHAPTER 1. GETTING STARTED WITH SELINUX

1.1. INTRODUCTION TO SELINUX

Security Enhanced Linux (SELinux) provides an additional layer of system security. SELinux
fundamentally answers the question: May <subject> do <action> to <object>? , for example: May a web
server access files in users' home directories?

The standard access policy based on the user, group, and other permissions, known as Discretionary
Access Control (DAC), does not enable system administrators to create comprehensive and fine-
grained security policies, such as restricting specific applications to only viewing log files, while allowing
other applications to append new data to the log files.

SELinux implements Mandatory Access Control (MAC). Every process and system resource has a
special security label called an SELinux context. A SELinux context, sometimes referred to as an SELinux
label, is an identifier which abstracts away the system-level details and focuses on the security
properties of the entity. Not only does this provide a consistent way of referencing objects in the
SELinux policy, but it also removes any ambiguity that can be found in other identification methods. For
example, a file can have multiple valid path names on a system that makes use of bind mounts.

The SELinux policy uses these contexts in a series of rules which define how processes can interact with
each other and the various system resources. By default, the policy does not allow any interaction unless
a rule explicitly grants access.

NOTE

Remember that SELinux policy rules are checked after DAC rules. SELinux policy rules
are not used if DAC rules deny access first, which means that no SELinux denial is logged
if the traditional DAC rules prevent the access.

SELinux contexts have several fields: user, role, type, and security level. The SELinux type information is
perhaps the most important when it comes to the SELinux policy, as the most common policy rule which
defines the allowed interactions between processes and system resources uses SELinux types and not
the full SELinux context. SELinux types end with _t. For example, the type name for the web server is
httpd_t. The type context for files and directories normally found in /var/www/html/ is
httpd_sys_content_t. The type contexts for files and directories normally found in /tmp and /var/tmp/
is tmp_t. The type context for web server ports is http_port_t.

There is a policy rule that permits Apache (the web server process running as httpd_t) to access files
and directories with a context normally found in /var/www/html/ and other web server directories
(httpd_sys_content_t). There is no allow rule in the policy for files normally found in /tmp and /var/tmp/,
so access is not permitted. With SELinux, even if Apache is compromised, and a malicious script gains
access, it is still not able to access the /tmp directory.

Figure 1.1. An example how can SELinux help to run Apache and MariaDB in a secure way.

CHAPTER 1. GETTING STARTED WITH SELINUX

5

Figure 1.1. An example how can SELinux help to run Apache and MariaDB in a secure way.

As the previous scheme shows, SELinux allows the Apache process running as httpd_t to access the
/var/www/html/ directory and it denies the same process to access the /data/mysql/ directory because
there is no allow rule for the httpd_t and mysqld_db_t type contexts. On the other hand, the MariaDB
process running as mysqld_t is able to access the /data/mysql/ directory and SELinux also correctly
denies the process with the mysqld_t type to access the /var/www/html/ directory labeled as
httpd_sys_content_t.

Additional resources

For more information, see the following documentation:

The selinux(8) man page and man pages listed by the apropos selinux command.

Man pages listed by the man -k _selinux command when the selinux-policy-doc package is
installed.

The SELinux Coloring Book helps you to better understand SELinux basic concepts.

SELinux Wiki FAQ

1.2. BENEFITS OF RUNNING SELINUX

SELinux provides the following benefits:

All processes and files are labeled. SELinux policy rules define how processes interact with files,
as well as how processes interact with each other. Access is only allowed if an SELinux policy
rule exists that specifically allows it.

Fine-grained access control. Stepping beyond traditional UNIX permissions that are controlled
at user discretion and based on Linux user and group IDs, SELinux access decisions are based
on all available information, such as an SELinux user, role, type, and, optionally, a security level.

SELinux policy is administratively-defined and enforced system-wide.

Improved mitigation for privilege escalation attacks. Processes run in domains, and are
therefore separated from each other. SELinux policy rules define how processes access files
and other processes. If a process is compromised, the attacker only has access to the normal
functions of that process, and to files the process has been configured to have access to. For

Red Hat Enterprise Linux 8 Using SELinux

6

https://people.redhat.com/duffy/selinux/selinux-coloring-book_A4-Stapled.pdf
http://selinuxproject.org/page/FAQ

example, if the Apache HTTP Server is compromised, an attacker cannot use that process to
read files in user home directories, unless a specific SELinux policy rule was added or configured
to allow such access.

SELinux can be used to enforce data confidentiality and integrity, as well as protecting
processes from untrusted inputs.

However, SELinux is not:

antivirus software,

replacement for passwords, firewalls, and other security systems,

all-in-one security solution.

SELinux is designed to enhance existing security solutions, not replace them. Even when running
SELinux, it is important to continue to follow good security practices, such as keeping software up-to-
date, using hard-to-guess passwords, and firewalls.

1.3. SELINUX EXAMPLES

The following examples demonstrate how SELinux increases security:

The default action is deny. If an SELinux policy rule does not exist to allow access, such as for a
process opening a file, access is denied.

SELinux can confine Linux users. A number of confined SELinux users exist in the SELinux
policy. Linux users can be mapped to confined SELinux users to take advantage of the security
rules and mechanisms applied to them. For example, mapping a Linux user to the SELinux
user_u user, results in a Linux user that is not able to run unless configured otherwise set user
ID (setuid) applications, such as sudo and su, as well as preventing them from executing
potentially malicious files and applications in their home directory.

Increased process and data separation. The concept of SELinux domains allows defining which
processes can access certain files and directories. For example, when running SELinux, unless
otherwise configured, an attacker cannot compromise a Samba server, and then use that Samba
server as an attack vector to read and write to files used by other processes, such as MariaDB
databases.

SELinux helps mitigate the damage made by configuration mistakes. Domain Name System
(DNS) servers often replicate information between each other in what is known as a zone
transfer. Attackers can use zone transfers to update DNS servers with false information. When
running the Berkeley Internet Name Domain (BIND) as a DNS server in Red Hat Enterprise
Linux, even if an administrator forgets to limit which servers can perform a zone transfer, the
default SELinux policy prevents zone files [1] from being updated using zone transfers, by the
BIND named daemon itself, and by other processes.

1.4. SELINUX ARCHITECTURE AND PACKAGES

SELinux is a Linux Security Module (LSM) that is built into the Linux kernel. The SELinux subsystem in
the kernel is driven by a security policy which is controlled by the administrator and loaded at boot. All
security-relevant, kernel-level access operations on the system are intercepted by SELinux and
examined in the context of the loaded security policy. If the loaded policy allows the operation, it
continues. Otherwise, the operation is blocked and the process receives an error.

SELinux decisions, such as allowing or disallowing access, are cached. This cache is known as the Access

CHAPTER 1. GETTING STARTED WITH SELINUX

7

SELinux decisions, such as allowing or disallowing access, are cached. This cache is known as the Access
Vector Cache (AVC). When using these cached decisions, SELinux policy rules need to be checked less,
which increases performance. Remember that SELinux policy rules have no effect if DAC rules deny
access first. Raw audit messages are logged to the /var/log/audit/audit.log and they start with the
type=AVC string.

In Red Hat Enterprise Linux 8, system services are controlled by the systemd daemon; systemd starts
and stops all services, and users and processes communicate with systemd using the systemctl utility.
The systemd daemon can consult the SELinux policy and check the label of the calling process and the
label of the unit file that the caller tries to manage, and then ask SELinux whether or not the caller is
allowed the access. This approach strengthens access control to critical system capabilities, which
include starting and stopping system services.

The systemd daemon also works as an SELinux Access Manager. It retrieves the label of the process
running systemctl or the process that sent a D-Bus message to systemd. The daemon then looks up
the label of the unit file that the process wanted to configure. Finally, systemd can retrieve information
from the kernel if the SELinux policy allows the specific access between the process label and the unit
file label. This means a compromised application that needs to interact with systemd for a specific
service can now be confined by SELinux. Policy writers can also use these fine-grained controls to
confine administrators.

IMPORTANT

To avoid incorrect SELinux labeling and subsequent problems, ensure that you start
services using a systemctl start command.

Red Hat Enterprise Linux 8 provides the following packages for working with SELinux:

policies: selinux-policy-targeted, selinux-policy-mls

tools: policycoreutils, policycoreutils-gui, libselinux-utils, policycoreutils-python-utils,
setools-console, checkpolicy

1.5. SELINUX STATES AND MODES

SELinux can run in one of three modes: enforcing, permissive, or disabled.

Enforcing mode is the default, and recommended, mode of operation; in enforcing mode
SELinux operates normally, enforcing the loaded security policy on the entire system.

In permissive mode, the system acts as if SELinux is enforcing the loaded security policy,
including labeling objects and emitting access denial entries in the logs, but it does not actually
deny any operations. While not recommended for production systems, permissive mode can be
helpful for SELinux policy development and debugging.

Disabled mode is strongly discouraged; not only does the system avoid enforcing the SELinux
policy, it also avoids labeling any persistent objects such as files, making it difficult to enable
SELinux in the future.

Use the setenforce utility to change between enforcing and permissive mode. Changes made with
setenforce do not persist across reboots. To change to enforcing mode, enter the setenforce 1
command as the Linux root user. To change to permissive mode, enter the setenforce 0 command. Use
the getenforce utility to view the current SELinux mode:

Red Hat Enterprise Linux 8 Using SELinux

8

getenforce
Enforcing

setenforce 0
getenforce
Permissive

setenforce 1
getenforce
Enforcing

In Red Hat Enterprise Linux, you can set individual domains to permissive mode while the system runs in
enforcing mode. For example, to make the httpd_t domain permissive:

semanage permissive -a httpd_t

Note that permissive domains are a powerful tool that can compromise security of your system. Red Hat
recommends to use permissive domains with caution, for example, when debugging a specific scenario.

[1] Text files that include information, such as host name to IP address mappings, that are used by DNS servers.

CHAPTER 1. GETTING STARTED WITH SELINUX

9

CHAPTER 2. CHANGING SELINUX STATES AND MODES
When enabled, SELinux can run in one of two modes: enforcing or permissive. The following sections
show how to permanently change into these modes.

2.1. PERMANENT CHANGES IN SELINUX STATES AND MODES

As discussed in SELinux states and modes, SELinux can be enabled or disabled. When enabled, SELinux
has two modes: enforcing and permissive.

Use the getenforce or sestatus commands to check in which mode SELinux is running. The getenforce
command returns Enforcing, Permissive, or Disabled.

The sestatus command returns the SELinux status and the SELinux policy being used:

$ sestatus
SELinux status: enabled
SELinuxfs mount: /sys/fs/selinux
SELinux root directory: /etc/selinux
Loaded policy name: targeted
Current mode: enforcing
Mode from config file: enforcing
Policy MLS status: enabled
Policy deny_unknown status: allowed
Memory protection checking: actual (secure)
Max kernel policy version: 31

NOTE

When systems run SELinux in permissive mode, users and processes can label various
file-system objects incorrectly. File-system objects created while SELinux is disabled are
not labeled at all. This behavior causes problems when changing to enforcing mode
because SELinux relies on correct labels of file-system objects.

To prevent incorrectly labeled and unlabeled files from causing problems, file systems are
automatically relabeled when changing from the disabled state to permissive or enforcing
mode. In permissive mode, use the fixfiles -F onboot command as root to create the
/.autorelabel file containing the -F option to ensure that files are relabeled upon next
reboot.

2.2. CHANGING TO PERMISSIVE MODE

Use the following procedure to permanently change SELinux mode to permissive. When SELinux is
running in permissive mode, SELinux policy is not enforced. The system remains operational and
SELinux does not deny any operations but only logs AVC messages, which can be then used for
troubleshooting, debugging, and SELinux policy improvements. Each AVC is logged only once in this
case.

Prerequisites

The selinux-policy-targeted, libselinux-utils, and policycoreutils packages are installed on
your system.

The selinux=0 or enforcing=0 kernel parameters are not used.

Red Hat Enterprise Linux 8 Using SELinux

10

Procedure

1. Open the /etc/selinux/config file in a text editor of your choice, for example:

vi /etc/selinux/config

2. Configure the SELINUX=permissive option:

This file controls the state of SELinux on the system.
SELINUX= can take one of these three values:
enforcing - SELinux security policy is enforced.
permissive - SELinux prints warnings instead of enforcing.
disabled - No SELinux policy is loaded.
SELINUX=permissive
SELINUXTYPE= can take one of these two values:
targeted - Targeted processes are protected,
mls - Multi Level Security protection.
SELINUXTYPE=targeted

3. Restart the system:

reboot

Verification steps

1. After the system restarts, confirm that the getenforce command returns Permissive:

$ getenforce
Permissive

2.3. CHANGING TO ENFORCING MODE

Use the following procedure to switch SELinux to enforcing mode. When SELinux is running in enforcing
mode, it enforces the SELinux policy and denies access based on SELinux policy rules. In RHEL,
enforcing mode is enabled by default when the system was initially installed with SELinux.

Prerequisites

The selinux-policy-targeted, libselinux-utils, and policycoreutils packages are installed on
your system.

The selinux=0 or enforcing=0 kernel parameters are not used.

Procedure

1. Open the /etc/selinux/config file in a text editor of your choice, for example:

vi /etc/selinux/config

2. Configure the SELINUX=enforcing option:

This file controls the state of SELinux on the system.
SELINUX= can take one of these three values:

CHAPTER 2. CHANGING SELINUX STATES AND MODES

11

enforcing - SELinux security policy is enforced.
permissive - SELinux prints warnings instead of enforcing.
disabled - No SELinux policy is loaded.
SELINUX=enforcing
SELINUXTYPE= can take one of these two values:
targeted - Targeted processes are protected,
mls - Multi Level Security protection.
SELINUXTYPE=targeted

3. Save the change, and restart the system:

reboot

On the next boot, SELinux relabels all the files and directories within the system and adds
SELinux context for files and directories that were created when SELinux was disabled.

Verification steps

1. After the system restarts, confirm that the getenforce command returns Enforcing:

$ getenforce
Enforcing

NOTE

After changing to enforcing mode, SELinux may deny some actions because of incorrect
or missing SELinux policy rules. To view what actions SELinux denies, enter the following
command as root:

ausearch -m AVC,USER_AVC,SELINUX_ERR,USER_SELINUX_ERR -ts today

Alternatively, with the setroubleshoot-server package installed, enter:

grep "SELinux is preventing" /var/log/messages

If SELinux is active and the Audit daemon (auditd) is not running on your system, then
search for certain SELinux messages in the output of the dmesg command:

dmesg | grep -i -e type=1300 -e type=1400

See Troubleshooting problems related to SELinux for more information.

2.4. ENABLING SELINUX ON SYSTEMS THAT PREVIOUSLY HAD IT
DISABLED

When you enable SELinux on systems that previously had it disabled, to avoid problems, such as
systems unable to boot or process failures, follow this procedure:

Procedure

1. Enable SELinux in permissive mode. For more information, see Changing to permissive mode .

Red Hat Enterprise Linux 8 Using SELinux

12

2. Restart your system:

reboot

3. Check for SELinux denial messages.For more information, see Identifying SELinux denials.

4. If there are no denials, switch to enforcing mode. For more information, see Changing SELinux
modes at boot time.

Verification steps

1. After the system restarts, confirm that the getenforce command returns Enforcing:

$ getenforce
Enforcing

Additional resources

To run custom applications with SELinux in enforcing mode, choose one of the following
scenarios:

Run your application in the unconfined_service_t domain.

Write a new policy for your application. See the Writing Custom SELinux Policy
Knowledgebase article for more information.

Temporary changes in modes are covered in SELinux states and modes.

2.5. DISABLING SELINUX

Use the following procedure to permanently disable SELinux.

IMPORTANT

When SELinux is disabled, SELinux policy is not loaded at all; it is not enforced and AVC
messages are not logged. Therefore, all benefits of running SELinux are lost.

Red Hat strongly recommends to use permissive mode instead of permanently disabling
SELinux. See Changing to permissive mode for more information about permissive mode.

WARNING

Disabling SELinux using the SELINUX=disabled option in the /etc/selinux/config
results in a process in which the kernel boots with SELinux enabled and switches to
disabled mode later in the boot process. Because memory leaks and race conditions
causing kernel panics can occur, prefer disabling SELinux by adding the selinux=0
parameter to the kernel command line as described in Changing SELinux modes at
boot time if your scenario really requires to completely disable SELinux.



CHAPTER 2. CHANGING SELINUX STATES AND MODES

13

https://access.redhat.com/solutions/117583

Procedure

1. Open the /etc/selinux/config file in a text editor of your choice, for example:

vi /etc/selinux/config

2. Configure the SELINUX=disabled option:

This file controls the state of SELinux on the system.
SELINUX= can take one of these three values:
enforcing - SELinux security policy is enforced.
permissive - SELinux prints warnings instead of enforcing.
disabled - No SELinux policy is loaded.
SELINUX=disabled
SELINUXTYPE= can take one of these two values:
targeted - Targeted processes are protected,
mls - Multi Level Security protection.
SELINUXTYPE=targeted

3. Save the change, and restart your system:

reboot

Verification steps

1. After reboot, confirm that the getenforce command returns Disabled:

$ getenforce
Disabled

2.6. CHANGING SELINUX MODES AT BOOT TIME

On boot, you can set several kernel parameters to change the way SELinux runs:

enforcing=0

Setting this parameter causes the system to start in permissive mode, which is useful when
troubleshooting issues. Using permissive mode might be the only option to detect a problem if your
file system is too corrupted. Moreover, in permissive mode, the system continues to create the labels
correctly. The AVC messages that are created in this mode can be different than in enforcing mode.
In permissive mode, only the first denial from a series of the same denials is reported. However, in
enforcing mode, you might get a denial related to reading a directory, and an application stops. In
permissive mode, you get the same AVC message, but the application continues reading files in the
directory and you get an AVC for each denial in addition.

selinux=0

This parameter causes the kernel to not load any part of the SELinux infrastructure. The init scripts
notice that the system booted with the selinux=0 parameter and touch the /.autorelabel file. This
causes the system to automatically relabel the next time you boot with SELinux enabled.

IMPORTANT

Red Hat Enterprise Linux 8 Using SELinux

14

IMPORTANT

Red Hat does not recommend using the selinux=0 parameter. To debug your system,
prefer using permissive mode.

autorelabel=1

This parameter forces the system to relabel similarly to the following commands:

touch /.autorelabel
reboot

If a file system contains a large amount of mislabeled objects, start the system in permissive mode to
make the autorelabel process successful.

Additional resources

For additional SELinux-related kernel boot parameters, such as checkreqprot, see the
/usr/share/doc/kernel-doc-<KERNEL_VER>/Documentation/admin-guide/kernel-
parameters.txt file installed with the kernel-doc package. Replace the <KERNEL_VER> string
with the version number of the installed kernel, for example:

yum install kernel-doc
$ less /usr/share/doc/kernel-doc-4.18.0/Documentation/admin-guide/kernel-parameters.txt

CHAPTER 2. CHANGING SELINUX STATES AND MODES

15

CHAPTER 3. MANAGING CONFINED AND UNCONFINED
USERS

The following sections explain the mapping of Linux users to SELinux users, describe the basic confined
user domains, and demonstrate mapping a new user to an SELinux user.

3.1. CONFINED AND UNCONFINED USERS

Each Linux user is mapped to an SELinux user using SELinux policy. This allows Linux users to inherit the
restrictions on SELinux users.

To see the SELinux user mapping on your system, use the semanage login -l command as root:

semanage login -l
Login Name SELinux User MLS/MCS Range Service

__default__ unconfined_u s0-s0:c0.c1023 *
root unconfined_u s0-s0:c0.c1023 *

In Red Hat Enterprise Linux, Linux users are mapped to the SELinux default login by default, which is
mapped to the SELinux unconfined_u user. The following line defines the default mapping:

__default__ unconfined_u s0-s0:c0.c1023 *

Confined and unconfined Linux users are subject to executable and writable memory checks, and are
also restricted by MCS or MLS.

To list the available SELinux users, enter the following command:

$ seinfo -u
Users: 8
 guest_u
 root
 staff_u
 sysadm_u
 system_u
 unconfined_u
 user_u
 xguest_u

Note that the seinfo command is provided by the setools-console package, which is not installed by
default.

If an unconfined Linux user executes an application that SELinux policy defines as one that can
transition from the unconfined_t domain to its own confined domain, the unconfined Linux user is still
subject to the restrictions of that confined domain. The security benefit of this is that, even though a
Linux user is running unconfined, the application remains confined. Therefore, the exploitation of a flaw
in the application can be limited by the policy.

Similarly, we can apply these checks to confined users. Each confined user is restricted by a confined
user domain. The SELinux policy can also define a transition from a confined user domain to its own
target confined domain. In such a case, confined users are subject to the restrictions of that target
confined domain. The main point is that special privileges are associated with the confined users
according to their role.

Red Hat Enterprise Linux 8 Using SELinux

16

3.2. SELINUX USER CAPABILITIES

The following table provides examples of basic confined domains for Linux users in Red Hat Enterprise
Linux:

Table 3.1. SELinux user capabilities

User Role Domain X Window
System

su or sudo Execute in
home
directory
and /tmp
(default)

Networking

sysadm_u sysadm_r sysadm_t yes su and sudo yes yes

staff_u staff_r staff_t yes only sudo yes yes

user_u user_r user_t yes no yes yes

guest_u guest_r guest_t no no yes no

xguest_u xguest_r xguest_t yes no yes Firefox only

Linux users in the user_t, guest_t, and xguest_t domains can only run set user ID (setuid)
applications if SELinux policy permits it (for example, passwd). These users cannot run the su
and sudo setuid applications, and therefore cannot use these applications to become root.

Linux users in the sysadm_t, staff_t, user_t, and xguest_t domains can log in using the X
Window System and a terminal.

By default, Linux users in the staff_t, user_t, guest_t, and xguest_t domains can execute
applications in their home directories and /tmp.
To prevent them from executing applications, which inherit users' permissions, in directories
they have write access to, set the guest_exec_content and xguest_exec_content booleans to
off. This helps prevent flawed or malicious applications from modifying users' files.

The only network access Linux users in the xguest_t domain have is Firefox connecting to web
pages.

The sysadm_u user cannot log in directly using SSH. To enable SSH logins for sysadm_u, set
the ssh_sysadm_login boolean to on:

setsebool -P ssh_sysadm_login on

Note that system_u is a special user identity for system processes and objects. It must never be
associated to a Linux user. Also, unconfined_u and root are unconfined users. For these reasons, they
are not included in the previous table of SELinux user capabilities.

Alongside with the already mentioned SELinux users, there are special roles, that can be mapped to
those users using the semanage user command. These roles determine what SELinux allows the user
to do:

webadm_r can only administrate SELinux types related to the Apache HTTP Server.

CHAPTER 3. MANAGING CONFINED AND UNCONFINED USERS

17

dbadm_r can only administrate SELinux types related to the MariaDB database and the
PostgreSQL database management system.

logadm_r can only administrate SELinux types related to the syslog and auditlog processes.

secadm_r can only administrate SELinux.

auditadm_r can only administrate processes related to the Audit subsystem.

To list all available roles, enter the the seinfo -r command:

$ seinfo -r
Roles: 14
 auditadm_r
 dbadm_r
 guest_r
 logadm_r
 nx_server_r
 object_r
 secadm_r
 staff_r
 sysadm_r
 system_r
 unconfined_r
 user_r
 webadm_r
 xguest_r

Note that the seinfo command is provided by the setools-console package, which is not installed by
default.

Additional resources

For more information, see the seinfo(1), semanage-login(8), and xguest_selinux(8) man
pages.

3.3. ADDING A NEW USER AUTOMATICALLY MAPPED TO THE
SELINUX UNCONFINED_U USER

The following procedure demonstrates how to add a new Linux user to the system. The user is
automatically mapped to the SELinux unconfined_u user.

Prerequisites

The root user is running unconfined, as it does by default in Red Hat Enterprise Linux.

Procedure

1. Enter the following command to create a new Linux user named example.user:

useradd example.user

2. To assign a password to the Linux example.user user:

Red Hat Enterprise Linux 8 Using SELinux

18

passwd example.user
Changing password for user example.user.
New password:
Retype new password:
passwd: all authentication tokens updated successfully.

3. Log out of your current session.

4. Log in as the Linux example.user user. When you log in, the pam_selinux PAM module
automatically maps the Linux user to an SELinux user (in this case, unconfined_u), and sets up
the resulting SELinux context. The Linux user’s shell is then launched with this context.

Verification steps

1. When logged in as the example.user user, check the context of a Linux user:

$ id -Z
unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023

Additional resources

For more information, see the pam_selinux(8) man page.

3.4. ADDING A NEW USER AS AN SELINUX-CONFINED USER

Use the following steps to add a new SELinux-confined user to the system. This example procedure
maps the user to the SELinux staff_u user right with the command for creating the user account.

Prerequisites

The root user is running unconfined, as it does by default in Red Hat Enterprise Linux.

Procedure

1. Enter the following command to create a new Linux user named example.user and map it to the
SELinux staff_u user:

useradd -Z staff_u example.user

2. To assign a password to the Linux example.user user:

passwd example.user
Changing password for user example.user.
New password:
Retype new password:
passwd: all authentication tokens updated successfully.

3. Log out of your current session.

4. Log in as the Linux example.user user. The user’s shell launches with the staff_u context.

Verification steps

CHAPTER 3. MANAGING CONFINED AND UNCONFINED USERS

19

1. When logged in as the example.user user, check the context of a Linux user:

$ id -Z
uid=1000(example.user) gid=1000(example.user) groups=1000(example.user)
context=staff_u:staff_r:staff_t:s0-s0:c0.c1023

Additional resources

For more information, see the pam_selinux(8) man page.

3.5. CONFIGURING THE SYSTEM TO CONFINE SELINUX USERS

By default, all Linux users in Red Hat Enterprise Linux, including users with administrative privileges, are
mapped to the unconfined SELinux user unconfined_u. You can improve the security of the system by
assigning users to SELinux confined users. This is useful to conform with the V-71971 Security Technical
Implementation Guide. For more information about confined and unconfined users, see Managing
confined and unconfined users.

3.5.1. Confining regular users

You can confine all regular users on your system by mapping them to the user_u SELinux user.

Procedure

1. Display the list of SELinux login records. The list displays the mappings of Linux users to
SELinux users:

semanage login -l

Login Name SELinux User MLS/MCS Range Service

__default__ unconfined_u s0-s0:c0.c1023 *
root unconfined_u s0-s0:c0.c1023 *

2. Map the __default__ user, which represents all users without an explicit mapping, to the user_u
SELinux user:

semanage login -m -s user_u -r s0 __default__

Verification steps

1. Check that the __default__ user is mapped to the user_u SELinux user:

semanage login -l

Login Name SELinux User MLS/MCS Range Service

__default__ user_u s0 *
root unconfined_u s0-s0:c0.c1023 *

2. Verify that the processes of a new user run in the user_u:user_r:user_t:s0 SELinux context.

a. Create a new user:

Red Hat Enterprise Linux 8 Using SELinux

20

https://rhel7stig.readthedocs.io/en/latest/medium.html#v-71971-the-operating-system-must-prevent-non-privileged-users-from-executing-privileged-functions-to-include-disabling-circumventing-or-altering-implemented-security-safeguards-countermeasures-rhel-07-020020
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/using_selinux/index#confined-and-unconfined-users_managing-confined-and-unconfined-users

adduser example.user

b. Define a password for example.user:

passwd example.user

c. Log out as root and log in as the new user.

d. Show the security context for the user’s ID:

[example.user@localhost ~]$ id -Z
user_u:user_r:user_t:s0

e. Show the security context of the user’s current processes:

[example.user@localhost ~]$ ps axZ
LABEL PID TTY STAT TIME COMMAND
- 1 ? Ss 0:05 /usr/lib/systemd/systemd --switched-root --
system --deserialize 18
- 3729 ? S 0:00 (sd-pam)
user_u:user_r:user_t:s0 3907 ? Ss 0:00 /usr/lib/systemd/systemd --user
- 3911 ? S 0:00 (sd-pam)
user_u:user_r:user_t:s0 3918 ? S 0:00 sshd: example.user@pts/0
user_u:user_r:user_t:s0 3922 pts/0 Ss 0:00 -bash
user_u:user_r:user_dbusd_t:s0 3969 ? Ssl 0:00 /usr/bin/dbus-daemon --session --
address=systemd: --nofork --nopidfile --systemd-activation --syslog-only
user_u:user_r:user_t:s0 3971 pts/0 R+ 0:00 ps axZ

3.5.2. Confining administrator users

You can use one of the following two methods to confine administrator users.

3.5.2.1. Confining an administrator by mapping to sysadm_u

You can confine a user with administrative privileges by mapping the user directly to the sysadm_u
SELinux user. When the user logs in, the session runs in the sysadm_u:sysadm_r:sysadm_t SELinux
context.

Prerequisites

The root user runs unconfined. This is the Red Hat Enterprise Linux default.

Procedure

1. Optional: To allow sysadm_u users to connect to the system using SSH:

setsebool -P ssh_sysadm_login on

2. Create a new user, add the user to the wheel user group, and map the user to the sysadm_u
SELinux user:

adduser -G wheel -Z sysadm_u example.user

3. Optional: Map an existing user to the sysadm_u SELinux user and add the user to the wheel

CHAPTER 3. MANAGING CONFINED AND UNCONFINED USERS

21

3. Optional: Map an existing user to the sysadm_u SELinux user and add the user to the wheel
user group:

usermod -G wheel -Z sysadm_u example.user

Verification steps

1. Check that example.user is mapped to the sysadm_u SELinux user:

semanage login -l | grep example.user
example.user sysadm_u s0-s0:c0.c1023 *

2. Log in as example.user, for example, using SSH, and show the user’s security context:

[example.user@localhost ~]$ id -Z
sysadm_u:sysadm_r:sysadm_t:s0-s0:c0.c1023

3. Switch to the root user:

$ sudo -i
[sudo] password for example.user:

4. Verify that the security context remains unchanged:

id -Z
sysadm_u:sysadm_r:sysadm_t:s0-s0:c0.c1023

5. Try an administrative task, for example, restarting the sshd service:

systemctl restart sshd

If there is no output, the command finished successfully.

If the command does not finish successfully, it prints the following message:

Failed to restart sshd.service: Access denied
See system logs and 'systemctl status sshd.service' for details.

3.5.2.2. Confining an administrator using sudo and the sysadm_r role

You can map a specific user with administrative privileges to the staff_u SELinux user, and configure
sudo so that the user can gain the sysadm_r SELinux administrator role. This role allows the user to
perform administrative tasks without SELinux denials. When the user logs in, the session runs in the
staff_u:staff_r:staff_t SELinux context, but when the user enters a command using sudo, the session
changes to the staff_u:sysadm_r:sysadm_t context.

Prerequisites

The root user runs unconfined. This is the Red Hat Enterprise Linux default.

Procedure

1. Create a new user, add the user to the wheel user group, and map the user to the staff_u

Red Hat Enterprise Linux 8 Using SELinux

22

1. Create a new user, add the user to the wheel user group, and map the user to the staff_u
SELinux user:

adduser -G wheel -Z staff_u example.user

2. Optional: Map an existing user to the staff_u SELinux user and add the user to the wheel user
group:

usermod -G wheel -Z staff_u example.user

3. To allow example.user to gain the SELinux administrator role, create a new file in the
/etc/sudoers.d/ directory, for example:

visudo -f /etc/sudoers.d/example.user

4. Add the following line to the new file:

example.user ALL=(ALL) TYPE=sysadm_t ROLE=sysadm_r ALL

Verification steps

1. Check that example.user is mapped to the staff_u SELinux user:

semanage login -l | grep example.user
example.user staff_u s0-s0:c0.c1023 *

2. Log in as example.user, for example, using SSH, and switch to the root user:

[example.user@localhost ~]$ sudo -i
[sudo] password for example.user:

3. Show the root security context:

id -Z
staff_u:sysadm_r:sysadm_t:s0-s0:c0.c1023

4. Try an administrative task, for example, restarting the sshd service:

systemctl restart sshd

If there is no output, the command finished successfully.

If the command does not finish successfully, it prints the following message:

Failed to restart sshd.service: Access denied
See system logs and 'systemctl status sshd.service' for details.

3.5.3. Additional resources

For additional options, see the How to set up a system with SELinux confined users
knowledgebase article.

CHAPTER 3. MANAGING CONFINED AND UNCONFINED USERS

23

https://access.redhat.com/articles/3263671

For more information, see the user_selinux(8), staff_selinux(8), and sysadm_selinux(8) man
pages.

3.6. ADDITIONAL RESOURCES

For more information, see the unconfined_selinux(8) man page.

Red Hat Enterprise Linux 8 Using SELinux

24

CHAPTER 4. CONFIGURING SELINUX FOR APPLICATIONS
AND SERVICES WITH NON-STANDARD CONFIGURATIONS

When SELinux is in enforcing mode, the default policy is the targeted policy. The following sections
provide information on setting up and configuring the SELinux policy for various services after you
change configuration defaults, such as ports, database locations, or file-system permissions for
processes.

In the following procedures, you learn to change SELinux types for non-standard ports, to identify and
fix incorrect labels for changes of default directories, and to adjust the policy using SELinux booleans.

4.1. CUSTOMIZING THE SELINUX POLICY FOR THE APACHE HTTP
SERVER IN A NON-STANDARD CONFIGURATION

You can configure the Apache HTTP server to listen on a different port and to provide content in a non-
default directory. To prevent consequent SELinux denials, follow the steps in this procedure to adjust
your system’s SELinux policy.

Prerequisites

The httpd package is installed and the Apache HTTP server is configured to listen on TCP port
3131 and to use the /var/test_www/ directory instead of the default /var/www/ directory.

The policycoreutils-python-utils and setroubleshoot-server packages are installed on your
system.

Procedure

1. Start the httpd service and check the status:

systemctl start httpd
systemctl status httpd
...
httpd[14523]: (13)Permission denied: AH00072: make_sock: could not bind to address
[::]:3131
...
systemd[1]: Failed to start The Apache HTTP Server.
...

2. The SELinux policy assumes that httpd runs on port 80:

semanage port -l | grep http
http_cache_port_t tcp 8080, 8118, 8123, 10001-10010
http_cache_port_t udp 3130
http_port_t tcp 80, 81, 443, 488, 8008, 8009, 8443, 9000
pegasus_http_port_t tcp 5988
pegasus_https_port_t tcp 5989

3. Change the SELinux type of port 3131 to match port 80:

semanage port -a -t http_port_t -p tcp 3131

4. Start httpd again:

CHAPTER 4. CONFIGURING SELINUX FOR APPLICATIONS AND SERVICES WITH NON-STANDARD CONFIGURATIONS

25

systemctl start httpd

5. However, the content remains inaccessible:

wget localhost:3131/index.html
...
HTTP request sent, awaiting response... 403 Forbidden
...

Find the reason with the sealert tool:

sealert -l "*"
...
SELinux is preventing httpd from getattr access on the file /var/test_www/html/index.html.
...

6. Compare SELinux types for the standard and the new path using the matchpathcon tool:

matchpathcon /var/www/html /var/www/html system_u:object_r:httpd_sys_content_t:s0
matchpathcon /var/test_www/html /var/test_www/html system_u:object_r:var_t:s0

7. Change the SELinux type of the new /var/test_www/html/ content directory to the type of the
default /var/www/html directory:

semanage fcontext -a -e /var/www /var/test_www

8. Relabel the /var directory recursively:

restorecon -Rv /var/
...
Relabeled /var/test_www/html from unconfined_u:object_r:var_t:s0 to
unconfined_u:object_r:httpd_sys_content_t:s0
Relabeled /var/test_www/html/index.html from unconfined_u:object_r:var_t:s0 to
unconfined_u:object_r:httpd_sys_content_t:s0

Verification steps

1. Check that the httpd service is running:

systemctl status httpd
...
Active: active (running)
...
systemd[1]: Started The Apache HTTP Server.
httpd[14888]: Server configured, listening on: port 3131
...

2. Verify that the content provided by the Apache HTTP server is accessible:

wget localhost:3131/index.html
...
HTTP request sent, awaiting response... 200 OK

Red Hat Enterprise Linux 8 Using SELinux

26

Length: 0 [text/html]
Saving to: ‘index.html’
...

Additional resources

The semanage(8), matchpathcon(8), and sealert(8) man pages.

4.2. ADJUSTING THE POLICY FOR SHARING NFS AND CIFS VOLUMES
USING SELINUX BOOLEANS

You can change parts of SELinux policy at runtime using booleans, even without any knowledge of
SELinux policy writing. This enables changes, such as allowing services access to NFS volumes, without
reloading or recompiling SELinux policy. The following procedure demonstrates listing SELinux
booleans and configuring them to achieve the required changes in the policy.

NFS mounts on the client side are labeled with a default context defined by a policy for NFS volumes. In
RHEL, this default context uses the nfs_t type. Also, Samba shares mounted on the client side are
labeled with a default context defined by the policy. This default context uses the cifs_t type. You can
enable or disable booleans to control which services are allowed to access the nfs_t and cifs_t types.

To allow the Apache HTTP server service (httpd) to access and share NFS and CIFS volumes, perform
the following steps:

Prerequisites

Optionally, install the selinux-policy-devel package to obtain clearer and more detailed
descriptions of SELinux booleans in the output of the semanage boolean -l command.

Procedure

1. Identify SELinux booleans relevant for NFS, CIFS, and Apache:

semanage boolean -l | grep 'nfs\|cifs' | grep httpd
httpd_use_cifs (off , off) Allow httpd to access cifs file systems
httpd_use_nfs (off , off) Allow httpd to access nfs file systems

2. List the current state of the booleans:

$ getsebool -a | grep 'nfs\|cifs' | grep httpd
httpd_use_cifs --> off
httpd_use_nfs --> off

3. Enable the identified booleans:

setsebool httpd_use_nfs on
setsebool httpd_use_cifs on

NOTE

Use setsebool with the -P option to make the changes persistent across restarts.
A setsebool -P command requires a rebuild of the entire policy, and it might take
some time depending on your configuration.

CHAPTER 4. CONFIGURING SELINUX FOR APPLICATIONS AND SERVICES WITH NON-STANDARD CONFIGURATIONS

27

Verification steps

1. Check that the booleans are on:

$ getsebool -a | grep 'nfs\|cifs' | grep httpd
httpd_use_cifs --> on
httpd_use_nfs --> on

Additional resources

The semanage-boolean(8), sepolicy-booleans(8), getsebool(8), setsebool(8), booleans(5),
and booleans(8) man pages.

4.3. ADDITIONAL RESOURCES

See Troubleshooting problems related to SELinux for more details on identifying and analyzing
SELinux denials.

Red Hat Enterprise Linux 8 Using SELinux

28

CHAPTER 5. TROUBLESHOOTING PROBLEMS RELATED TO
SELINUX

If you plan to enable SELinux on systems where it has been previously disabled or if you run a service in a
non-standard configuration, you might need to troubleshoot situations potentially blocked by SELinux.
Note that in most cases, SELinux denials are signs of misconfiguration.

5.1. IDENTIFYING SELINUX DENIALS

Follow only the necessary steps from this procedure; in most cases, you need to perform just step 1.

Procedure

1. When your scenario is blocked by SELinux, the /var/log/audit/audit.log file is the first place to
check for more information about a denial. To query Audit logs, use the ausearch tool. Because
the SELinux decisions, such as allowing or disallowing access, are cached and this cache is known
as the Access Vector Cache (AVC), use the AVC and USER_AVC values for the message type
parameter, for example:

ausearch -m AVC,USER_AVC,SELINUX_ERR,USER_SELINUX_ERR -ts recent

If there are no matches, check if the Audit daemon is running. If it does not, repeat the denied
scenario after you start auditd and check the Audit log again.

2. In case auditd is running, but there are no matches in the output of ausearch, check messages
provided by the systemd Journal:

journalctl -t setroubleshoot

3. If SELinux is active and the Audit daemon is not running on your system, then search for certain
SELinux messages in the output of the dmesg command:

dmesg | grep -i -e type=1300 -e type=1400

4. Even after the previous three checks, it is still possible that you have not found anything. In this
case, AVC denials can be silenced because of dontaudit rules.
To temporarily disable dontaudit rules, allowing all denials to be logged:

semodule -DB

After re-running your denied scenario and finding denial messages using the previous steps, the
following command enables dontaudit rules in the policy again:

semodule -B

5. If you apply all four previous steps, and the problem still remains unidentified, consider if
SELinux really blocks your scenario:

Switch to permissive mode:

CHAPTER 5. TROUBLESHOOTING PROBLEMS RELATED TO SELINUX

29

setenforce 0
$ getenforce
Permissive

Repeat your scenario.

If the problem still occurs, something different than SELinux is blocking your scenario.

5.2. ANALYZING SELINUX DENIAL MESSAGES

After identifying that SELinux is blocking your scenario, you might need to analyze the root cause before
you choose a fix.

Prerequisites

The policycoreutils-python-utils and setroubleshoot-server packages are installed on your
system.

Procedure

1. List more details about a logged denial using the sealert command, for example:

$ sealert -l "*"
SELinux is preventing /usr/bin/passwd from write access on the file
/root/test.

***** Plugin leaks (86.2 confidence) suggests *****************************

If you want to ignore passwd trying to write access the test file,
because you believe it should not need this access.
Then you should report this as a bug.
You can generate a local policy module to dontaudit this access.
Do
ausearch -x /usr/bin/passwd --raw | audit2allow -D -M my-passwd
semodule -X 300 -i my-passwd.pp

***** Plugin catchall (14.7 confidence) suggests **************************

...

Raw Audit Messages
type=AVC msg=audit(1553609555.619:127): avc: denied { write } for
pid=4097 comm="passwd" path="/root/test" dev="dm-0" ino=17142697
scontext=unconfined_u:unconfined_r:passwd_t:s0-s0:c0.c1023
tcontext=unconfined_u:object_r:admin_home_t:s0 tclass=file permissive=0

...

Hash: passwd,passwd_t,admin_home_t,file,write

2. If the output obtained in the previous step does not contain clear suggestions:

Enable full-path auditing to see full paths to accessed objects and to make additional Linux
Audit event fields visible:

Red Hat Enterprise Linux 8 Using SELinux

30

auditctl -w /etc/shadow -p w -k shadow-write

Clear the setroubleshoot cache:

rm -f /var/lib/setroubleshoot/setroubleshoot.xml

Reproduce the problem.

Repeat step 1.

3. If sealert returns only catchall suggestions or suggests adding a new rule using the audit2allow
tool, match your problem with examples listed and explained in SELinux denials in the Audit log .

Additional resources

The sealert(8) man page.

5.3. FIXING ANALYZED SELINUX DENIALS

In most cases, suggestions provided by the sealert tool give you the right guidance about how to fix
problems related to the SELinux policy. See Analyzing SELinux denial messages for information how to
use sealert to analyze SELinux denials.

Be careful when the tool suggests using the audit2allow tool for configuration changes. You should not
use audit2allow to generate a local policy module as your first option when you see an SELinux denial.
Troubleshooting should start with a check if there is a labeling problem. The second most often case is
that you have changed a process configuration, and you forgot to tell SELinux about it.

Labeling problems

A common cause of labeling problems is when a non-standard directory is used for a service. For
example, instead of using /var/www/html/ for a website, an administrator might want to use
/srv/myweb/. On Red Hat Enterprise Linux, the /srv directory is labeled with the var_t type. Files and
directories created in /srv inherit this type. Also, newly-created objects in top-level directories, such as
/myserver, can be labeled with the default_t type. SELinux prevents the Apache HTTP Server (httpd)
from accessing both of these types. To allow access, SELinux must know that the files in /srv/myweb/
are to be accessible by httpd:

semanage fcontext -a -t httpd_sys_content_t "/srv/myweb(/.*)?"

This semanage command adds the context for the /srv/myweb/ directory and all files and directories
under it to the SELinux file-context configuration. The semanage utility does not change the context.
As root, use the restorecon utility to apply the changes:

restorecon -R -v /srv/myweb

Incorrect context

The matchpathcon utility checks the context of a file path and compares it to the default label for that
path. The following example demonstrates the use of matchpathcon on a directory that contains
incorrectly labeled files:

$ matchpathcon -V /var/www/html/*
/var/www/html/index.html has context unconfined_u:object_r:user_home_t:s0, should be

CHAPTER 5. TROUBLESHOOTING PROBLEMS RELATED TO SELINUX

31

system_u:object_r:httpd_sys_content_t:s0
/var/www/html/page1.html has context unconfined_u:object_r:user_home_t:s0, should be
system_u:object_r:httpd_sys_content_t:s0

In this example, the index.html and page1.html files are labeled with the user_home_t type. This type
is used for files in user home directories. Using the mv command to move files from your home directory
may result in files being labeled with the user_home_t type. This type should not exist outside of home
directories. Use the restorecon utility to restore such files to their correct type:

restorecon -v /var/www/html/index.html
restorecon reset /var/www/html/index.html context unconfined_u:object_r:user_home_t:s0-
>system_u:object_r:httpd_sys_content_t:s0

To restore the context for all files under a directory, use the -R option:

restorecon -R -v /var/www/html/
restorecon reset /var/www/html/page1.html context unconfined_u:object_r:samba_share_t:s0-
>system_u:object_r:httpd_sys_content_t:s0
restorecon reset /var/www/html/index.html context unconfined_u:object_r:samba_share_t:s0-
>system_u:object_r:httpd_sys_content_t:s0

Confined applications configured in non-standard ways

Services can be run in a variety of ways. To account for that, you need to specify how you run your
services. You can achieve this through SELinux booleans that allow parts of SELinux policy to be
changed at runtime. This enables changes, such as allowing services access to NFS volumes, without
reloading or recompiling SELinux policy. Also, running services on non-default port numbers requires
policy configuration to be updated using the semanage command.

For example, to allow the Apache HTTP Server to communicate with MariaDB, enable the
httpd_can_network_connect_db boolean:

setsebool -P httpd_can_network_connect_db on

Note that the -P option makes the setting persistent across reboots of the system.

If access is denied for a particular service, use the getsebool and grep utilities to see if any booleans
are available to allow access. For example, use the getsebool -a | grep ftp command to search for FTP
related booleans:

$ getsebool -a | grep ftp
ftpd_anon_write --> off
ftpd_full_access --> off
ftpd_use_cifs --> off
ftpd_use_nfs --> off

ftpd_connect_db --> off
httpd_enable_ftp_server --> off
tftp_anon_write --> off

To get a list of booleans and to find out if they are enabled or disabled, use the getsebool -a command.
To get a list of booleans including their meaning, and to find out if they are enabled or disabled, install
the selinux-policy-devel package and use the semanage boolean -l command as root.

Port numbers

Red Hat Enterprise Linux 8 Using SELinux

32

Depending on policy configuration, services can only be allowed to run on certain port numbers.
Attempting to change the port a service runs on without changing policy may result in the service failing
to start. For example, run the semanage port -l | grep http command as root to list http related ports:

semanage port -l | grep http
http_cache_port_t tcp 3128, 8080, 8118
http_cache_port_t udp 3130
http_port_t tcp 80, 443, 488, 8008, 8009, 8443
pegasus_http_port_t tcp 5988
pegasus_https_port_t tcp 5989

The http_port_t port type defines the ports Apache HTTP Server can listen on, which in this case, are
TCP ports 80, 443, 488, 8008, 8009, and 8443. If an administrator configures httpd.conf so that httpd
listens on port 9876 (Listen 9876), but policy is not updated to reflect this, the following command fails:

systemctl start httpd.service
Job for httpd.service failed. See 'systemctl status httpd.service' and 'journalctl -xn' for details.

systemctl status httpd.service
httpd.service - The Apache HTTP Server
 Loaded: loaded (/usr/lib/systemd/system/httpd.service; disabled)
 Active: failed (Result: exit-code) since Thu 2013-08-15 09:57:05 CEST; 59s ago
 Process: 16874 ExecStop=/usr/sbin/httpd $OPTIONS -k graceful-stop (code=exited,
status=0/SUCCESS)
 Process: 16870 ExecStart=/usr/sbin/httpd $OPTIONS -DFOREGROUND (code=exited,
status=1/FAILURE)

An SELinux denial message similar to the following is logged to /var/log/audit/audit.log:

type=AVC msg=audit(1225948455.061:294): avc: denied { name_bind } for pid=4997
comm="httpd" src=9876 scontext=unconfined_u:system_r:httpd_t:s0
tcontext=system_u:object_r:port_t:s0 tclass=tcp_socket

To allow httpd to listen on a port that is not listed for the http_port_t port type, use the semanage port
command to assign a different label to the port:

semanage port -a -t http_port_t -p tcp 9876

The -a option adds a new record; the -t option defines a type; and the -p option defines a protocol. The
last argument is the port number to add.

Corner cases, evolving or broken applications, and compromised systems

Applications may contain bugs, causing SELinux to deny access. Also, SELinux rules are evolving –
SELinux may not have seen an application running in a certain way, possibly causing it to deny access,
even though the application is working as expected. For example, if a new version of PostgreSQL is
released, it may perform actions the current policy does not account for, causing access to be denied,
even though access should be allowed.

For these situations, after access is denied, use the audit2allow utility to create a custom policy module
to allow access. You can report missing rules in the SELinux policy in Red Hat Bugzilla. For Red Hat
Enterprise Linux 8, create bugs against the Red Hat Enterprise Linux 8 product, and select the
selinux-policy component. Include the output of the audit2allow -w -a and audit2allow -a commands
in such bug reports.

CHAPTER 5. TROUBLESHOOTING PROBLEMS RELATED TO SELINUX

33

https://bugzilla.redhat.com/

If an application asks for major security privileges, it could be a signal that the application is
compromised. Use intrusion detection tools to inspect such suspicious behavior.

The Solution Engine on the Red Hat Customer Portal can also provide guidance in the form of an article
containing a possible solution for the same or very similar problem you have. Select the relevant product
and version and use SELinux-related keywords, such as selinux or avc, together with the name of your
blocked service or application, for example: selinux samba.

5.4. SELINUX DENIALS IN THE AUDIT LOG

The Linux Audit system stores log entries in the /var/log/audit/audit.log file by default. To list only
SELinux-related records, use the ausearch command with the message type parameter set to AVC and
AVC_USER at a minimum, for example:

ausearch -m AVC,USER_AVC,SELINUX_ERR,USER_SELINUX_ERR

An SELinux denial entry in the Audit log file can look as follows:

type=AVC msg=audit(1395177286.929:1638): avc: denied { read } for pid=6591 comm="httpd"
name="webpages" dev="0:37" ino=2112 scontext=system_u:system_r:httpd_t:s0
tcontext=system_u:object_r:nfs_t:s0 tclass=dir

The most important parts of this entry are:

avc: denied - the action performed by SELinux and recorded in Access Vector Cache (AVC)

{ read } - the denied action

pid=6591 - the process identifier of the subject that tried to perform the denied action

comm="httpd" - the name of the command that was used to invoke the analyzed process

httpd_t - the SELinux type of the process

nfs_t - the SELinux type of the object affected by the process action

tclass=dir - the target object class

The previous log entry can be translated to:

SELinux denied the httpd process with PID 6591 and the httpd_t type to read from a directory with the
nfs_t type.

The following SELinux denial message occurs when the Apache HTTP Server attempts to access a
directory labeled with a type for the Samba suite:

type=AVC msg=audit(1226874073.147:96): avc: denied { getattr } for pid=2465 comm="httpd"
path="/var/www/html/file1" dev=dm-0 ino=284133 scontext=unconfined_u:system_r:httpd_t:s0
tcontext=unconfined_u:object_r:samba_share_t:s0 tclass=file

{ getattr } - the getattr entry indicates the source process was trying to read the target file’s
status information. This occurs before reading files. SELinux denies this action because the
process accesses the file and it does not have an appropriate label. Commonly seen permissions
include getattr, read, and write.

Red Hat Enterprise Linux 8 Using SELinux

34

https://access.redhat.com/solution-engine/
https://access.redhat.com/

path="/var/www/html/file1" - the path to the object (target) the process attempted to access.

scontext="unconfined_u:system_r:httpd_t:s0" - the SELinux context of the process
(source) that attempted the denied action. In this case, it is the SELinux context of the Apache
HTTP Server, which is running with the httpd_t type.

tcontext="unconfined_u:object_r:samba_share_t:s0" - the SELinux context of the object
(target) the process attempted to access. In this case, it is the SELinux context of file1.

This SELinux denial can be translated to:

SELinux denied the httpd process with PID 2465 to access the /var/www/html/file1 file with the
samba_share_t type, which is not accessible to processes running in the httpd_t domain unless
configured otherwise.

Additional resources

For more information, see the auditd(8) and ausearch(8) man pages.

5.5. RELATED INFORMATION

The Basic SELinux Troubleshooting in CLI article on the Customer Portal.

The What is SELinux trying to tell me? The 4 key causes of SELinux errors presentation on
Fedora People

CHAPTER 5. TROUBLESHOOTING PROBLEMS RELATED TO SELINUX

35

https://access.redhat.com/articles/2191331
https://fedorapeople.org/~dwalsh/SELinux/Presentations/selinux_four_things.pdf

CHAPTER 6. USING MULTI-LEVEL SECURITY (MLS)
The Multi-Level Security (MLS) policy uses levels of clearance as originally designed by the US defense
community. MLS meets a very narrow set of security requirements based around the way information
are managed in rigidly controlled environments such as the military.

MLS is difficult to work with and does not map well to general-case scenarios.

6.1. MULTI-LEVEL SECURITY (MLS)

The Multi-Level Security (MLS) technology classifies data using the information security levels:

[highest] Top secret

[high] Secret

[low] Confidential

[lowest] Unclassified

The rules that apply to data flow operate from lower levels to higher levels, and never the reverse.

MLS calls processes as subjects, and files, devices, and other passive components of the system as
objects. Both subjects and objects are labeled with a security level, which entails a subject’s clearance or
an object’s classification.

SELinux uses the Bell-La Padula Model (BLP) model. This model specifies how information can flow
within the system based on labels attached to each subject and object. In BLP, processes can read the
same or lower security levels but can only write to the same or higher security level.

The system always combines MLS access rules with conventional access permissions (file permissions).
For example, if a user with a security level of "Secret" uses Discretionary Access Control (DAC) to block
access to a file by other users, this also blocks access by users with a security level of "Top Secret". A
higher security clearance does not automatically permit to arbitrarily browse a file system.

Users with top-level clearances do not automatically acquire administrative rights on multi-level
systems. While they may have access to all information on the computer, this is different from having
administrative rights.

6.2. SWITCHING THE SELINUX POLICY TO MLS

Use the following steps to switch the SELinux policy from targeted to Multi-Level Security (MLS).

IMPORTANT

Red Hat does not recommend to use the MLS policy on a system that is running the X
Window System. Furthermore, when you relabel the file system with MLS labels, the
system may prevent confined domains from access, which prevents your system from
starting correctly. Therefore ensure that you switch SELinux to permissive mode before
you relabel the files. On most systems, you see a lot of SELinux denials after switching to
MLS, and many of them are not trivial to fix.

Procedure

1. Install the selinux-policy-mls package:

Red Hat Enterprise Linux 8 Using SELinux

36

yum install selinux-policy-mls

2. Open the /etc/selinux/config file in a text editor of your choice, for example:

vi /etc/selinux/config

3. Change SELinux mode from enforcing to permissive and switch from the targeted policy to
MLS:

SELINUX=permissive
SELINUXTYPE=mls

Save the changes, and quit the editor.

4. Before you enable the MLS policy, you must relabel each file on the file system with an MLS
label:

fixfiles -F onboot
System will relabel on next boot

5. Restart the system:

reboot

6. Check for SELinux denials:

ausearch -m AVC,USER_AVC,SELINUX_ERR,USER_SELINUX_ERR -ts recent -i

Because the previous command does not cover all scenarios, see Troubleshooting problems
related to SELinux for guidance on identifying, analyzing, and fixing SELinux denials.

7. After you ensure that there are no problems related to SELinux on your system, switch SELinux
back to enforcing mode by changing the corresponding option in /etc/selinux/config:

SELINUX=enforcing

8. Restart the system:

reboot

IMPORTANT

If your system does not start or you are not able to log in after you switch to MLS, add the
enforcing=0 parameter to your kernel command line. See Changing SELinux modes at
boot time for more information.

Also note that in MLS, SSH logins as the root user mapped to the sysadm_r SELinux role
differ from logging in as root in staff_r. Before you start your system in MLS for the first
time, consider allowing SSH logins as sysadm_r by setting the ssh_sysadm_login
SELinux boolean to 1. To enable ssh_sysadm_login later, already in MLS, you must log
in as root in staff_r, switch to root in sysadm_r using the newrole -r sysadm_r
command, and then set the boolean to 1.

CHAPTER 6. USING MULTI-LEVEL SECURITY (MLS)

37

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_selinux/troubleshooting-problems-related-to-selinux_using-selinux
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_selinux/changing-selinux-states-and-modes_using-selinux#changing-selinux-modes-at-boot-time_changing-selinux-states-and-modes

Verification steps

1. Verify that SELinux runs in enforcing mode:

getenforce
Enforcing

2. Check that the status of SELinux returns the mls value:

sestatus | grep mls
Loaded policy name: mls

Additional resources

The fixfiles(8), setsebool(8), and ssh_selinux(8) man pages.

Red Hat Enterprise Linux 8 Using SELinux

38

CHAPTER 7. WRITING A CUSTOM SELINUX POLICY
This section guides you on how to write and use a custom policy that enables you to run your
applications confined by SELinux.

7.1. CUSTOM SELINUX POLICIES AND RELATED TOOLS

An SELinux security policy is a collection of SELinux rules. A policy is a core component of SELinux and
is loaded into the kernel by SELinux user-space tools. The kernel enforces the use of an SELinux policy
to evaluate access requests on the system. By default, SELinux denies all requests except for requests
that correspond to the rules specified in the loaded policy.

Each SELinux policy rule describes an interaction between a process and a system resource:

ALLOW apache_process apache_log:FILE READ;

You can read this example rule as: The Apache process can read its logging file. In this rule,
apache_process and apache_log are labels. An SELinux security policy assigns labels to processes and
defines relations to system resources. This way, a policy maps operating-system entities to the SELinux
layer.

SELinux labels are stored as extended attributes of file systems, such as ext2. You can list them using
the getfattr utility or a ls -Z command, for example:

$ ls -Z /etc/passwd
system_u:object_r:passwd_file_t:s0 /etc/passwd

Where system_u is an SELinux user, object_r is an example of the SELinux role, and passwd_file_t is
an SELinux domain.

The default SELinux policy provided by the selinux-policy packages contains rules for applications and
daemons that are parts of Red Hat Enterprise Linux 8 and are provided by packages in its repositories.
Applications not described in a rule in this distribution policy are not confined by SELinux. To change
this, you have to modify the policy using a policy module, which contains additional definitions and rules.

In Red Hat Enterprise Linux 8, you can query the installed SELinux policy and generate new policy
modules using the sepolicy tool. Scripts that sepolicy generates together with the policy modules
always contain a command using the restorecon utility. This utility is a basic tool for fixing labeling
problems in a selected part of a file system.

Additional resources

For more information, see the sepolicy(8) and getfattr(1) man pages.

7.2. CREATING AND ENFORCING AN SELINUX POLICY FOR A
CUSTOM APPLICATION

This example procedure provides steps for confining a simple daemon by SELinux. Replace the daemon
with your custom application and modify the example rule according to the requirements of that
application and your security policy.

Prerequisites

CHAPTER 7. WRITING A CUSTOM SELINUX POLICY

39

The policycoreutils-devel package and its dependencies are installed on your system.

Procedure

1. For this example procedure, prepare a simple daemon that opens the /var/log/messages file
for writing:

a. Create a new file, and open it in a text editor of your choice:

$ vi mydaemon.c

b. Insert the following code:

c. Compile the file:

$ gcc -o mydaemon mydaemon.c

d. Create a systemd unit file for your daemon:

$ vi mydaemon.service
[Unit]
Description=Simple testing daemon

[Service]
Type=simple
ExecStart=/usr/local/bin/mydaemon

[Install]
WantedBy=multi-user.target

e. Install and start the daemon:

cp mydaemon /usr/local/bin/
cp mydaemon.service /usr/lib/systemd/system
systemctl start mydaemon
systemctl status mydaemon
● mydaemon.service - Simple testing daemon
 Loaded: loaded (/usr/lib/systemd/system/mydaemon.service; disabled; vendor preset:
disabled)
 Active: active (running) since Sat 2020-05-23 16:56:01 CEST; 19s ago

#include <unistd.h>
#include <stdio.h>

FILE *f;

int main(void)
{
while(1) {
f = fopen("/var/log/messages","w");
 sleep(5);
 fclose(f);
 }
}

Red Hat Enterprise Linux 8 Using SELinux

40

 Main PID: 4117 (mydaemon)
 Tasks: 1
 Memory: 148.0K
 CGroup: /system.slice/mydaemon.service
 └─4117 /usr/local/bin/mydaemon

May 23 16:56:01 localhost.localdomain systemd[1]: Started Simple testing daemon.

f. Check that the new daemon is not confined by SELinux:

$ ps -efZ | grep mydaemon
system_u:system_r:unconfined_service_t:s0 root 4117 1 0 16:56 ? 00:00:00
/usr/local/bin/mydaemon

2. Generate a custom policy for the daemon:

$ sepolicy generate --init /usr/local/bin/mydaemon
Created the following files:
/home/example.user/mysepol/mydaemon.te # Type Enforcement file
/home/example.user/mysepol/mydaemon.if # Interface file
/home/example.user/mysepol/mydaemon.fc # File Contexts file
/home/example.user/mysepol/mydaemon_selinux.spec # Spec file
/home/example.user/mysepol/mydaemon.sh # Setup Script

3. Rebuild the system policy with the new policy module using the setup script created by the
previous command:

./mydaemon.sh
Building and Loading Policy
+ make -f /usr/share/selinux/devel/Makefile mydaemon.pp
Compiling targeted mydaemon module
Creating targeted mydaemon.pp policy package
rm tmp/mydaemon.mod.fc tmp/mydaemon.mod
+ /usr/sbin/semodule -i mydaemon.pp
...

Note that the setup script relabels the corresponding part of the file system using the
restorecon command:

restorecon -v /usr/local/bin/mydaemon /usr/lib/systemd/system

4. Restart the daemon, and check that it now runs confined by SELinux:

systemctl restart mydaemon
$ ps -efZ | grep mydaemon
system_u:system_r:mydaemon_t:s0 root 8150 1 0 17:18 ? 00:00:00
/usr/local/bin/mydaemon

5. Because the daemon is now confined by SELinux, SELinux also prevents it from accessing
/var/log/messages. Display the corresponding denial message:

ausearch -m AVC -ts recent
...
type=AVC msg=audit(1590247112.719:5935): avc: denied { open } for pid=8150

CHAPTER 7. WRITING A CUSTOM SELINUX POLICY

41

comm="mydaemon" path="/var/log/messages" dev="dm-0" ino=2430831
scontext=system_u:system_r:mydaemon_t:s0 tcontext=unconfined_u:object_r:var_log_t:s0
tclass=file permissive=1
...

6. You can get additional information also using the sealert tool:

$ sealert
SELinux is preventing mydaemon from open access on the file /var/log/messages.

 Plugin catchall (100. confidence) suggests *

If you believe that mydaemon should be allowed open access on the messages file by
default.
Then you should report this as a bug.
You can generate a local policy module to allow this access.
Do
allow this access for now by executing:
ausearch -c 'mydaemon' --raw | audit2allow -M my-mydaemon
semodule -X 300 -i my-mydaemon.pp

Additional Information:
Source Context system_u:system_r:mydaemon_t:s0
Target Context unconfined_u:object_r:var_log_t:s0
Target Objects /var/log/messages [file]
Source mydaemon

...

7. Use the audit2allow tool to suggest changes:

$ ausearch -m AVC -ts recent | audit2allow -R

require {
 type mydaemon_t;
}

#============= mydaemon_t ==============
logging_write_generic_logs(mydaemon_t)

8. Because rules suggested by audit2allow can be incorrect for certain cases, use only a part
of its output to find the corresponding policy interface:

$ grep -r "logging_write_generic_logs" /usr/share/selinux/devel/include/ | grep .if
/usr/share/selinux/devel/include/system/logging.if:interface(logging_write_generic_logs',

9. Check the definition of the interface:

$ cat /usr/share/selinux/devel/include/system/logging.if
...
interface(logging_write_generic_logs',
 gen_require(`
 type var_log_t;
 ')

Red Hat Enterprise Linux 8 Using SELinux

42

 files_search_var($1)
 allow $1 var_log_t:dir list_dir_perms;
 write_files_pattern($1, var_log_t, var_log_t)
')
...

10. In this case, you can use the suggested interface. Add the corresponding rule to your type
enforcement file:

$ echo "logging_write_generic_logs(mydaemon_t)" >> mydaemon.te

Alternatively, you can add this rule instead of using the interface:

$ echo "allow mydaemon_t var_log_t:file { open write getattr };" >> mydaemon.te

11. Reinstall the policy:

./mydaemon.sh
Building and Loading Policy
+ make -f /usr/share/selinux/devel/Makefile mydaemon.pp
Compiling targeted mydaemon module
Creating targeted mydaemon.pp policy package
rm tmp/mydaemon.mod.fc tmp/mydaemon.mod
+ /usr/sbin/semodule -i mydaemon.pp
...

Verification steps

1. Check that your application runs confined by SELinux, for example:

$ ps -efZ | grep mydaemon
system_u:system_r:mydaemon_t:s0 root 8150 1 0 17:18 ? 00:00:00
/usr/local/bin/mydaemon

2. Verify that your custom application does not cause any SELinux denials:

ausearch -m AVC -ts recent
<no matches>

Additional resources

For more information, see the sepolgen(8), ausearch(8), audit2allow(1), audit2why(1),
sealert(8), and restorecon(8) man pages.

7.3. ADDITIONAL RESOURCES

For additional details and more examples, see the SELinux Policy Workshop

CHAPTER 7. WRITING A CUSTOM SELINUX POLICY

43

http://redhatgov.io/workshops/selinux_policy/

CHAPTER 8. CREATING SELINUX POLICIES FOR CONTAINERS
RHEL 8 provides a tool for generating SELinux policies for containers using the udica package.
With udica, you can create a tailored security policy for better control of how a container accesses
host system resources, such as storage, devices, and network. This enables you to harden your
container deployments against security violations and it also simplifies achieving and maintaining
regulatory compliance.

8.1. INTRODUCTION TO THE UDICA SELINUX POLICY GENERATOR

To simplify creating new SELinux policies for custom containers, RHEL 8 provides the udica utility.
You can use this tool to create a policy based on an inspection of the container JavaScript Object
Notation (JSON) file, which contains Linux-capabilities, mount-points, and ports definitions. The
tool consequently combines rules generated using the results of the inspection with rules inherited
from a specified SELinux Common Intermediate Language (CIL) block.

The process of generating SELinux policy for a container using udica has three main parts:

1. Parsing the container spec file in the JSON format

2. Finding suitable allow rules based on the results of the first part

3. Generating final SELinux policy

During the parsing phase, udica looks for Linux capabilities, network ports, and mount points.

Based on the results, udica detects which Linux capabilities are required by the container and
creates an SELinux rule allowing all these capabilities. If the container binds to a specific port,
udica uses SELinux user-space libraries to get the correct SELinux label of a port that is used by
the inspected container.

Afterward, udica detects which directories are mounted to the container file-system name space
from the host.

The CIL’s block inheritance feature allows udica to create templates of SELinux allow rules
focusing on a specific action, for example:

allow accessing home directories

allow accessing log files

allow accessing communication with Xserver.

These templates are called blocks and the final SELinux policy is created by merging the blocks.

Additional resources

For more details on the process of generating an SELinux policy with udica, see the
Generate SELinux policies for containers with udica Red Hat Blog article.

8.2. CREATING AND USING AN SELINUX POLICY FOR A CUSTOM
CONTAINER

To generate an SELinux security policy for a custom container, follow the steps in this procedure.

Red Hat Enterprise Linux 8 Using SELinux

44

https://www.redhat.com/en/blog/generate-selinux-policies-containers-with-udica

Prerequisites

The podman tool for managing containers is installed. If it is not, use the yum install
podman command.

A custom Linux container - ubi8 in this example.

Procedure

1. Install the udica package:

yum install -y udica

Alternatively, install the container-tools module, which provides a set of container software
packages, including udica:

yum module install -y container-tools

2. Start the ubi8 container that mounts the /home directory with read-only permissions and
the /var/spool directory with permissions to read and write. The container exposes the port
21.

podman run --env container=podman -v /home:/home:ro -v /var/spool:/var/spool:rw -p
21:21 -it ubi8 bash

Note that now the container runs with the container_t SELinux type. This type is a generic
domain for all containers in the SELinux policy and it might be either too strict or too loose
for your scenario.

3. Enter the podman ps command to obtain the ID of the container:

podman ps
CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES
37a3635afb8f registry.access.redhat.com/ubi8:latest bash 15 minutes ago Up 15
minutes ago heuristic_lewin

4. Create a container JSON file, and use udica for creating a policy module based on the
information in the JSON file:

podman inspect 37a3635afb8f > container.json
udica -j container.json my_container
Policy my_container with container id 37a3635afb8f created!
[...]

Alternatively:

podman inspect 37a3635afb8f | udica my_container
Policy my_container with container id 37a3635afb8f created!

Please load these modules using:
semodule -i my_container.cil

CHAPTER 8. CREATING SELINUX POLICIES FOR CONTAINERS

45

/usr/share/udica/templates/{base_container.cil,net_container.cil,home_container.cil}

Restart the container with: "--security-opt label=type:my_container.process" parameter

5. As suggested by the output of udica in the previous step, load the policy module:

semodule -i my_container.cil
/usr/share/udica/templates/{base_container.cil,net_container.cil,home_container.cil}

6. Stop the container and start it again with the --security-opt
label=type:my_container.process option:

podman stop 37a3635afb8f
podman run --security-opt label=type:my_container.process -v /home:/home:ro -v
/var/spool:/var/spool:rw -p 21:21 -it ubi8 bash

Verification steps

1. Check that the container runs with the my_container.process type:

ps -efZ | grep my_container.process
unconfined_u:system_r:container_runtime_t:s0-s0:c0.c1023 root 2275 434 1 13:49 pts/1
00:00:00 podman run --security-opt label=type:my_container.process -v /home:/home:ro -v
/var/spool:/var/spool:rw -p 21:21 -it ubi8 bash
system_u:system_r:my_container.process:s0:c270,c963 root 2317 2305 0 13:49 pts/0
00:00:00 bash

2. Verify that SELinux now allows access the /home and /var/spool mount points:

[root@37a3635afb8f /]# cd /home
[root@37a3635afb8f home]# ls
username
[root@37a3635afb8f ~]# cd /var/spool/
[root@37a3635afb8f spool]# touch test
[root@37a3635afb8f spool]#

3. Check that SELinux allows binding only to the port 21:

[root@37a3635afb8f /]# yum install nmap-ncat
[root@37a3635afb8f /]# nc -lvp 21
Ncat: Version 7.60 (https://nmap.org/ncat)
Ncat: Generating a temporary 1024-bit RSA key. Use --ssl-key and --ssl-cert to use a
permanent one.
Ncat: SHA-1 fingerprint: 6EEC 102E 6666 5F96 CC4F E5FA A1BE 4A5E 6C76 B6DC
Ncat: Listening on :::21
Ncat: Listening on 0.0.0.0:21

[root@37a3635afb8f /]# nc -lvp 80
Ncat: Version 7.60 (https://nmap.org/ncat)
Ncat: Generating a temporary 1024-bit RSA key. Use --ssl-key and --ssl-cert to use a
permanent one.
Ncat: SHA-1 fingerprint: 6EEC 102E 6666 5F96 CC4F E5FA A1BE 4A5E 6C76 B6DC
Ncat: bind to :::80: Permission denied. QUITTING.

Red Hat Enterprise Linux 8 Using SELinux

46

Additional resources

For more information, see the udica(8) and podman(1) man pages.

For guidance on how to start with containers on RHEL and how to work with container
images, see the Building, running, and managing containers document.

8.3. ADDITIONAL RESOURCES

For more details on creating policies with udica, see the udica - Generate SELinux policies
for containers page.

CHAPTER 8. CREATING SELINUX POLICIES FOR CONTAINERS

47

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/building_running_and_managing_containers/
https://github.com/containers/udica#creating-selinux-policy-for-container

CHAPTER 9. DEPLOYING THE SAME SELINUX
CONFIGURATION ON MULTIPLE SYSTEMS

This section provides two recommended ways for deploying your verified SELinux configuration on
multiple systems:

Using RHEL System Roles and Ansible

Using semanage export and import commands in your scripts

9.1. INTRODUCTION TO THE SELINUX SYSTEM ROLE

RHEL System Roles is a collection of Ansible roles and modules that provide a consistent
configuration interface to remotely manage multiple RHEL systems. The SELinux system role
enables the following actions:

Cleaning local policy modifications related to SELinux booleans, file contexts, ports, and
logins.

Setting SELinux policy booleans, file contexts, ports, and logins.

Restoring file contexts on specified files or directories.

The following table provides an overview of input variables available in the SELinux system role.

Table 9.1. SELinux system role variables

Role variable Description CLI alternative

selinux_policy Chooses a policy protecting
targeted processes or Multi Level
Security protection.

SELINUXTYPE in
/etc/selinux/config

selinux_state Switches SELinux modes. See
ansible-doc selinux

setenforce and SELINUX in
/etc/selinux/config.

selinux_booleans Enables and disables SELinux
booleans. See ansible-doc
seboolean.

setsebool

selinux_fcontexts Adds or removes a SELinux file
context mapping. See ansible-
doc sefcontext.

semanage fcontext

selinux_restore_dirs Restores SELinux labels in the
file-system tree.

restorecon -R

selinux_ports Sets SELinux labels on ports. See
ansible-doc seport.

semanage port

Red Hat Enterprise Linux 8 Using SELinux

48

selinux_logins Sets users to SELinux user
mapping. See ansible-doc
selogin.

semanage login

Role variable Description CLI alternative

The /usr/share/doc/rhel-system-roles/selinux/example-selinux-playbook.yml example playbook
installed by the rhel-system-roles package demonstrates how to set the targeted policy in
enforcing mode. The playbook also applies several local policy modifications and restores file
contexts in the /tmp/test_dir/ directory.

Additional resources

For a detailed reference on SELinux role variables, install the rhel-system-roles package,
and see the README.md or README.html files in the /usr/share/doc/rhel-system-
roles/selinux/ directory.

For more information on RHEL System Roles, see Introduction to RHEL System Roles

9.2. USING THE SELINUX SYSTEM ROLE TO APPLY SELINUX
SETTINGS ON MULTIPLE SYSTEMS

Follow the steps to prepare and apply an Ansible playbook with your verified SELinux settings.

Prerequisites

Your Red Hat Ansible Engine subscription is attached to the system. See the How do I
download and install Red Hat Ansible Engine article for more information.

Procedure

1. Enable the RHEL Ansible repository, for example:

subscription-manager repos --enable ansible-2-for-rhel-8-x86_64-rpms

2. Install Ansible Engine:

yum install ansible

3. Install RHEL system roles:

yum install rhel-system-roles

4. Apply your playbook with an SELinux system role.
The following command applies an example playbook, which is a part of the rhel-system-
roles package. You can use this playbook as a template:

ansible-playbook -i host1,host2,host3 /usr/share/doc/rhel-system-roles/selinux/example-
selinux-playbook.yml

CHAPTER 9. DEPLOYING THE SAME SELINUX CONFIGURATION ON MULTIPLE SYSTEMS

49

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_basic_system_settings/index#con_intro-to-rhel-system-roles_getting-started-with-system-administration
https://access.redhat.com/articles/3174981

Additional resources

For more information, install the rhel-system-roles package, and see the
/usr/share/doc/rhel-system-roles/selinux/ and /usr/share/ansible/roles/rhel-system-
roles.selinux/ directories.

9.3. TRANSFERRING SELINUX SETTINGS TO ANOTHER SYSTEM WITH
SEMANAGE

Use the following steps for transferring your custom and verified SELinux settings between RHEL
8-based systems.

Prerequisites

The policycoreutils-python-utils package is installed on your system.

Procedure

1. Export your verified SELinux settings:

semanage export -f ./my-selinux-settings.mod

2. Copy the file with the settings to the new system:

scp ./my-selinux-settings.mod new-system-hostname:

3. Log in on the new system:

$ ssh root@new-system-hostname

4. Import the settings on the new system:

new-system-hostname# semanage import -f ./my-selinux-settings.mod

Additional resources

semanage-export(8) and semanage-import(8) man pages

Red Hat Enterprise Linux 8 Using SELinux

50

	Table of Contents
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. GETTING STARTED WITH SELINUX
	1.1. INTRODUCTION TO SELINUX
	1.2. BENEFITS OF RUNNING SELINUX
	1.3. SELINUX EXAMPLES
	1.4. SELINUX ARCHITECTURE AND PACKAGES
	1.5. SELINUX STATES AND MODES

	CHAPTER 2. CHANGING SELINUX STATES AND MODES
	2.1. PERMANENT CHANGES IN SELINUX STATES AND MODES
	2.2. CHANGING TO PERMISSIVE MODE
	2.3. CHANGING TO ENFORCING MODE
	2.4. ENABLING SELINUX ON SYSTEMS THAT PREVIOUSLY HAD IT DISABLED
	2.5. DISABLING SELINUX
	2.6. CHANGING SELINUX MODES AT BOOT TIME

	CHAPTER 3. MANAGING CONFINED AND UNCONFINED USERS
	3.1. CONFINED AND UNCONFINED USERS
	3.2. SELINUX USER CAPABILITIES
	3.3. ADDING A NEW USER AUTOMATICALLY MAPPED TO THE SELINUX UNCONFINED_U USER
	3.4. ADDING A NEW USER AS AN SELINUX-CONFINED USER
	3.5. CONFIGURING THE SYSTEM TO CONFINE SELINUX USERS
	3.5.1. Confining regular users
	3.5.2. Confining administrator users
	3.5.2.1. Confining an administrator by mapping to sysadm_u
	3.5.2.2. Confining an administrator using sudo and the sysadm_r role

	3.5.3. Additional resources

	3.6. ADDITIONAL RESOURCES

	CHAPTER 4. CONFIGURING SELINUX FOR APPLICATIONS AND SERVICES WITH NON-STANDARD CONFIGURATIONS
	4.1. CUSTOMIZING THE SELINUX POLICY FOR THE APACHE HTTP SERVER IN A NON-STANDARD CONFIGURATION
	4.2. ADJUSTING THE POLICY FOR SHARING NFS AND CIFS VOLUMES USING SELINUX BOOLEANS
	4.3. ADDITIONAL RESOURCES

	CHAPTER 5. TROUBLESHOOTING PROBLEMS RELATED TO SELINUX
	5.1. IDENTIFYING SELINUX DENIALS
	5.2. ANALYZING SELINUX DENIAL MESSAGES
	5.3. FIXING ANALYZED SELINUX DENIALS
	5.4. SELINUX DENIALS IN THE AUDIT LOG
	5.5. RELATED INFORMATION

	CHAPTER 6. USING MULTI-LEVEL SECURITY (MLS)
	6.1. MULTI-LEVEL SECURITY (MLS)
	6.2. SWITCHING THE SELINUX POLICY TO MLS

	CHAPTER 7. WRITING A CUSTOM SELINUX POLICY
	7.1. CUSTOM SELINUX POLICIES AND RELATED TOOLS
	7.2. CREATING AND ENFORCING AN SELINUX POLICY FOR A CUSTOM APPLICATION
	7.3. ADDITIONAL RESOURCES

	CHAPTER 8. CREATING SELINUX POLICIES FOR CONTAINERS
	8.1. INTRODUCTION TO THE UDICA SELINUX POLICY GENERATOR
	8.2. CREATING AND USING AN SELINUX POLICY FOR A CUSTOM CONTAINER
	8.3. ADDITIONAL RESOURCES

	CHAPTER 9. DEPLOYING THE SAME SELINUX CONFIGURATION ON MULTIPLE SYSTEMS
	9.1. INTRODUCTION TO THE SELINUX SYSTEM ROLE
	9.2. USING THE SELINUX SYSTEM ROLE TO APPLY SELINUX SETTINGS ON MULTIPLE SYSTEMS
	9.3. TRANSFERRING SELINUX SETTINGS TO ANOTHER SYSTEM WITH SEMANAGE

